A Deterministic Polynomial-Time Algorithm for Heilbronn's Problem in Three Dimensions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Deterministic Polynomial Time Algorithm for Heilbronn's Problem in Dimension Three

Heilbronn conjectured that among arbitrary n points in the 2-dimensional unit square [0, 1], there must be three points which form a triangle of area at mostO(1/n). This conjecture was disproved by a nonconstructive argument of Komlós, Pintz and Szemerédi [14] who showed that for every n there is a configuration of n points in the unit square [0, 1] where all triangles have area at least Ω(log ...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

A Polynomial-Time Deterministic Approach to the Traveling Salesperson Problem

We propose a new polynomial-time deterministic algorithm that produces an approximated solution for the traveling salesperson problem. The proposed algorithm ranks cities based on their priorities calculated using a power function of means and standard deviations of their distances from other cities and then connects the cities to their neighbors in the order of their priorities. When connectin...

متن کامل

A Polynomial-Time Approximation Algorithm for a Geometric Dispersion Problem

We consider the problem of placing a set of disks in a region containing obstacles such that no two disks intersect. We are given a bounding polygon P and a set R of possibly intersecting unit disks whose centers are in P . The task is to find a set B of m disks of maximum radius such that no disk in B intersects a disk in B ∪ R, where m is the maximum number of unit disks that can be packed. B...

متن کامل

A simple, polynomial-time algorithm for the matrix torsion problem

The Matrix Torsion Problem (MTP) is: given a square matrix M with rational entries, decide whether two distinct powers of M are equal. It has been shown by Cassaigne and the author that the MTP reduces to the Matrix Power Problem (MPP) in polynomial time [1]: given two square matrices A and B with rational entries, the MTP is to decide whether B is a power of A. Since the MPP is decidable in po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Computing

سال: 2002

ISSN: 0097-5397,1095-7111

DOI: 10.1137/s0097539701395115